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Abstract

Whistler turbulence cascade is studied to understand essential properties of the energy spectrum

at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation.

The simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence

exhibits a steeper power-law spectrum around |k⊥λe| ∼ 1 than that predicted by EMHD simulations

and theories at relatively long wavelength, where k⊥ is the wavenumber perpendicular to the mean

magnetic field, and λe is the electron inertial length. A comparison of the spectral index from the

PIC simulation with that predicted by the scaling law for short scales, suggests that the energy

cascade at short scales includes the effect of not only magnetic fluctuations but also electron

velocity fluctuations. The steep magnetic spectrum may support recent solar wind observations at

the electron scales.
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Introduction: The solar wind serves as a natural laboratory of collisionless plasma tur-

bulence. Recent in-situ observations using the Cluster spacecraft[1, 2] showed the magnetic

energy spectrum in solar wind turbulence at 1 AU over a frequency range from less than

10−2 Hz up to 102 Hz. This frequency range covers scales from magnetohydrodynamics

(MHD) to electron kinetic dynamics. These observations found two distinct breakpoints in

the magnetic spectrum around the proton and electron inertial lengths.

At relatively low frequencies and long wavelengths, the inertial range solar wind turbu-

lence is observed to have a frequency power-law index of about −5/3, reminiscent of the

Kolmogorov inertial range spectrum for hydrodynamic turbulence. The first spectral break-

point is observed at approximately 0.5 Hz, corresponding to |kλp| ∼ 1, where k and λp

are the wavenumber and the proton inertial length, respectively. This is followed at higher

frequencies by a second regime with a steeper power-law dependence on frequency [3]. Near

20 Hz, a second spectral breakpoint is measured [1, 2]; this corresponds approximately to

|kλe| ∼ 1, where λe is the electron inertial length. At still higher frequencies a third regime

is observed with still steeper frequency dependence [1, 2].

References [1, 4, 5] attributed their observations of the second regime to the cascade

of kinetic Alfvén waves (KAWs) with Sahraoui et al. [1] giving the interpretation that

these KAWs are dissipated beyond the second breakpoint. However, a theoretical study by

Podesta et al. [6] suggests that the KAW cascade in the solar wind cannot reach electron

scales because of its dissipation. They imply that the magnetic energy spectrum near the

second breakpoint must be supported by fluctuations other than the KAW. Alexandrova

et al. [2] argued that the steeper spectrum of the third regime is due to dissipation of

fluctuations at electron scales.

Another plasma mode which may describe high-frequency turbulence observed in the so-

lar wind is the whistler fluctuation. The electron-magnetohydrodynamics (EMHD) model

can describe some aspects of whistler turbulence. The model assumes electrons as an in-

compressible fluid and protons as a stationary charge-neutralizing background. Biskamp

et al. [7, 8] studied electron hydrodynamic turbulence in both two- and three-dimensional

EMHD simulations, and showed that the magnetic energy spectrum is proportional to k−7/3

and k−5/3 at scales |kλe| < 1 and |kλe| > 1, respectively. Galtier and Bhattacharjee [9]

used analytic theory and found an anisotropic power-law magnetic spectrum proportional

to k
−5/2

⊥ k
−1/2

‖ , where the subscripts ‖ and ⊥ denote the directions parallel and perpendicular

2



to the mean magnetic field, respectively. Narita and Gary [10] also found a similar magnetic

spectrum EB(k⊥) ∝ k
−5/2

⊥ for both quasi-perpendicular and parallel interactions in their

theory of whistler turbulence. These predictions are close to the spectral index observed

at scales shorter than the proton inertial length and Larmor radius in the solar wind (e.g.

[1–3, 11]). However, at scales around the electron inertial length and Larmor radius, the

spectrum becomes steeper than the theoretical predictions, as observed by Cluster space-

craft [1, 2]. This may indicate either the dissipative effect of fluctuations or the breakdown

of the cold plasma dispersion equation used in the EMHD approximation.

Gary et al. [12] and Saito et al. [13] presented electromagnetic particle-in-cell (PIC)

simulations to study the energy cascade of whistler turbulence at relatively small amplitudes.

They showed that the magnetic energy spectrum is anisotropic in the same sense as predicted

by the EMHD model [9, 14, 15] in which the fluctuation energy cascades preferentially

perpendicular to the mean magnetic field. This anisotropy is similar to that shown in the

EMHD simulations, however the energy spectrum in the PIC simulations becomes steeper

than the EMHD predictions. Possible reasons for the discrepancy are relatively strong

Landau damping at |k⊥λe| ∼ 1 under the condition β = 0.1, or a different energy cascade

mechanism in the kinetic regime, or both.

In this letter, we study whistler turbulence cascading from |kλe| ≪ 1 to |kλe| ∼ 1, using

a two-dimensional electromagnetic particle-in-cell (PIC) simulation under the very low beta

condition βe = 0.01. This condition essentially eliminates whistler damping at |k⊥λe| ∼ 1,

so the PIC simulation in this limit may be compared directly against computations using

EMHD, which also has no wave-particle dissipation.

Simulation model: The simulation code used here is the relativistic electromagnetic

particle-in-cell code, which is modified from the TRIdimensional STANford code [16]. Our

code calculates three-dimensional velocity space response of each proton and electron super-

particles in two spatial dimensions. Hence, our simulation includes full kinetic properties

of plasma, contrary to other simulation models such as MHD and EMHD simulations. The

simulation box size is L‖ = L⊥ = 102.4λe, where the electron inertial length contains 10

spatial grid points. The periodic boundary conditions for both directions are imposed on

particles and electromagnetic fields. The total number of proton and electron superpar-

ticle pairs is about 6.7 × 107. Other initial physical dimensionless parameters are mass

ratio mp/me = 1836, temperature ratio Tp/Te = 1, electron βe = 0.01, and thermal speed
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ve,th/c = 0.1 and vp,th = ve(mp/me)
−1/2, where subscripts p and e mean proton and electron,

respectively, and c is the light speed.

We impose 42 right-hand polarized whistler waves at the initial time t = 0 in a homoge-

neous plasma. These wavenumbers are k‖λe = ±0.0613, ±0.1227, and ±0.184, and k⊥λe = 0,

±0.0613, ±0.1227, and ±0.184. Frequencies for the waves are derived from the linear disper-

sion relation in a homogeneous collisionless plasma with physical parameters shown above.

The fluctuating magnetic field δB, electric field δE, and electric current density δJ of each

mode satisfy Faraday’s and Ampére’s equations, where the electric current density is carried

only by electrons (δJ = −qneδve assuming protons are at rest due to their large inertia in

this relatively high frequency regime). At t = 0, each wave has an equal fluctuating ampli-

tude, while phases are chosen using a uniform random function. The initial total magnetic

fluctuation energy relative to the mean magnetic field energy ǫB =
∑

42

n=1
(|δBn|

2/B2

0
) is 0.1

where n is a number of each mode.

Simulation results: Figure 1 shows the temporal evolution of the two-dimensional mag-

netic energy spectrum. The magnetic fluctuations imposed at t = 0 yield a forward cascade

which transports the fluctuation energy preferentially in the k⊥ direction in wavenumber

space. This is the anisotropic property of whistler turbulence, which is consistent with the

EMHD simulations and theories. The figures further show that the magnetic spectrum be-

comes more anisotropic as time increases. We focus on the reduced one-dimensional energy

spectra as a function of k⊥ to study the power-law scaling of whistler turbulence.

Figure 2 shows the reduced (a) magnetic and (b) electron velocity fluctuation energy

spectra defined as

EB(k⊥) ≡
|B(k⊥)|2

B2
0

=
∑

|k‖λe|<0.5

|B(k‖, k⊥)|2

B2
0

. (1)

Ev(k⊥) ≡
mene|ve(k⊥)|2

B2
0/µ0

=
∑

|k‖λe|<0.5

mene|ve(k‖, k⊥)|2

B2
0/µ0

. (2)

These spectra are averaged in time from |Ωe|t ∼ 2500 to 3500. Dotted lines in (a) and

(b) indicate power-law lines of spectral indices −4 and −2 respectively. As seen in figure

2(a), the spectral slope of magnetic fluctuations has the index about −4 at |k⊥λe| ∼ 1.

This magnetic spectrum is clearly steeper than theoretical predictions published by several

authors [7–10, 14, 15]. The spectrum of electron velocity fluctuations plotted in figure 2(b)

shows a flatter spectrum with spectral index about −2. This flatter spectrum originates from
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the relationship between magnetic fluctuation Bλ and electron fluctuation ve,λ at scale λ. At

the high frequencies considered here, only electrons can respond to magnetic field fluctuations

because of the large mass ratio mp/me, so that the electric current J =rotB/µ0 consists of

only electron fluctuations. This relationship leads to qneve,λ = kBλ, where k ∼ λ−1, and

therefore the velocity spectrum is intrinsically flatter than the magnetic spectrum. The ratio

of magnetic and electron velocity fluctuation energy is given as

nemev
2

e,λ

B2

λ/µ0

= (kλe)
2 (3)

The magnetic fluctuation energy is dominant at |kλe| ≪ 1, however at |kλe| > 1, the electron

velocity fluctuation energy becomes larger. Our simulation results satisfy this relationship

as seen in figure 2.

Figure 3 shows the temporal variations of spectral indices for the magnetic (red) and

electron velocity (blue) spectra around |k⊥λe| ∼ 1. The spectral indices of magnetic and

electron velocity fluctuations are close to −4 and −2 respectively for a long time. This

indicates that whistler turbulence attains a quasi-steady, asymptotic state such that the

energy cascade rate is larger than the dissipation rate. If dissipation were steepening the

k⊥ spectrum, that spectrum must shrink in k⊥ direction in time with decaying fluctuation

energy, as shown in the βe = 0.1 simulations of Saito et al.[13]. But the βe = 0.01 simulation

here, figures 1 and 3 show the k⊥ spectrum does not clearly shrink, and does not steepen

in time, indicating that dissipation is ineffective at |k⊥λe| ∼ 1. Therefore, we conclude that

a magnetic spectrum steeper than EMHD predictions is an essential property of whistler

turbulence in the electron kinetic regime. We discuss why the spectrum should be so steep

in next section by using whistler turbulence theory.

Scaling laws at the electron scales: To derive the scaling laws at electron kinetic scales,

we modify two assumptions in EMHD. First, we assume the dispersion relation predicted

by linear theory ω ∝ k + const. (e.g. Figure 6.7 of Gary (1993) [17]). Several EMHD

theories assume a long wavelength regime, where the dispersion relation is ω ∝ k2. This

relation may not be applied at short scales. Second, the energy cascade rate is also modified.

Previous theories assume the energy cascade rate ǫ ∼ B2

λ/τcas, where Bλ is the magnetic

fluctuation at wavelength λ, and τcas is the energy transfer time, indicating that the magnetic

field fluctuation controls the energy cascade rate. This is because, as seen in equation 3,

the magnetic fluctuation energy is dominant at a relatively long wavelength. However at
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|kλe| ∼ 1, the electron kinetic energy cannot be ignored. Here, we consider wave-wave

interactions of whistler fluctuations following the dispersion relation ω ∝ k + const. as

magnetic energy fluctuations control the energy cascade, and as electron velocity fluctuations

do.

We refer to the EMHD theory for quasi-parallel interactions discussed in Narita and Gary

(2010) [10]. The group velocity in the parallel direction is

vg,‖ =
∂ω

∂k‖

∝
k‖

k⊥
(4)

where k =
√

k2

‖ + k2

⊥ and k⊥ ≫ k‖ because of the anisotropic property of whistler turbulence.

The interaction time for whistler wave packets at quasi-parallel propagation is

τw,‖ =
λ‖

vg,‖

∝
k⊥

k2

‖

(5)

where λ‖ is proportional to k−1

‖ . The cascade time for weak, incoherent, and quasi-parallel

interactions is defined as

τcas,‖ =
τ 2

ed

τw,‖

∝
λ2

v2

e,λ

k2

‖

k⊥

∝
k2

‖

k⊥k4B2

λ

(6)

where the eddy turnover time is τed = λ/ve,λ, and ve,λ ∝ kBλ. We consider two energy

cascade rates by the quasi-parallel interactions of whistler wave packets ǫB and ǫv that are

controlled by the fluctuations of the magnetic field and the electron velocity, respectively,

ǫB =
B2

λ

τcas,‖

∝
k⊥k4B4

λ

k2

‖

(7)

ǫv =
v2

e,λ

τcas,‖

∝
v2

e,λk⊥k4B2

λ

k2

‖

∝
k⊥k6B4

λ

k2

‖

(8)

In the stationary state, the energy cascade rate is constant, which gives the two magnetic

energy spectrum for ǫB and ǫv.

EB,B ∝ k−1

⊥ B2

λ ∝ ǫ
1/2

B k
−7/2

⊥ (9)

EB,v ∝ k−1

⊥ B2

λ ∝ ǫ1/2

v k
−9/2

⊥ (10)

where we assumed k‖ is constant, and k⊥ ≫ k‖. As the magnetic fluctuation energy de-

termines the energy cascade rate, the predicted magnetic spectrum shows ∝ k
−7/2

⊥ . On the

other hand, as the energy cascade rate is controlled by electron velocity fluctuations, the
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magnetic spectrum shows ∝ k
−9/2

⊥ . Our PIC simulation shows the magnetic spectral index

is about −4 which is between the spectral indices of EB,B and EB,v. The simulation result

suggests that the electron velocity and the magnetic fluctuation both are associated with

the formation of the magnetic energy spectrum at |kλe| ∼ 1 where the dispersion relation

follows ω ∝ k + const.

In the case of quasi-perpendicular interaction, the cascade time is given as

τcas,⊥ =
τ 2

ed

τw,⊥

∝
1

k3B2

λ

(11)

where τw,⊥ = (k⊥vg,⊥)−1 and vg,⊥ = ∂ω/∂k⊥ is constant with assumption k⊥ ≫ k‖. Because

τcas,‖/τcas,⊥ ∝ k2

‖/k
2

⊥ ≪ 1, the energy cascade of quasi-parallel interactions can be dominant

at the electron scales.

Conclusion: We have presented a full kinetic electromagnetic particle-in-cell simulation

for freely decaying whistler turbulence under the condition β = 0.01 where whistler damping

is negligible at |k⊥λe| ≤ 1. In this case the energy cascade rate is considerably larger than

the dissipation rate of fluctuations.

Whistler turbulence exhibits the anisotropic energy cascade which provides more fluctua-

tion energy at a given wavenumber perpendicular to B0 than parallel (Figure 1). The reduced

energy spectra (Eq.1) exhibit power-law spectra with an index of about −4 for the magnetic

field and about −2 for electron velocity fluctuations around |k⊥λe| ∼ 1. The spectral slope

of the magnetic energy is steeper than that predicted in the EMHD approximation.

As observed by the Cluster spacecraft [1, 2], the magnetic energy spectrum becomes

steeper at electron scales. Although dissipative kinetic Alfvén waves may explain the steeper

magnetic energy spectrum, our PIC simulation shows that whistler turbulence can also

explain the steeper spectrum at the electron kinetic scales. Our simulation used the low

β condition to reduce the dissipation effect by Landau resonance, under which the energy

cascade rate is larger than the damping in whistler turbulence. If the dissipation effects are

negligible at the electron kinetic scales, whistler turbulence explains the observations of the

steeper magnetic energy spectrum.

By comparing the results of the simulation with the scaling law, the steeper magnetic

energy spectrum is controlled by both magnetic and electron velocity fluctuations at |kλe| ∼

1. But the EMHD simulations assuming the cold plasma dispersion relation do not show

the steep magnetic spectrum even at |kλe| ∼ 1 [7, 8]. This discrepancy between the EMHD
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and the PIC simulation suggests that the energy cascade process includes electron kinetic

effects at the short scales. Further theoretical and simulation studies should be required

to understand physical processes for cascading the fluctuation energy with electron kinetic

effects.
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FIGURE CAPTIONS

Figure 1: Temporal evolution of magnetic energy spectrum normalized by the mean

magnetic field energy at |Ωe|t = 0, ∼ 1000, ∼ 2000, and ∼ 3000, plotted by color and line

contours. The value is shown as log-scale.

Figure 2: The reduced (a) magnetic and (b) electron velocity fluctuation energy spectra

as a function of k⊥, normalized by the mean magnetic field energy. Dotted lines shown in

(a) and (b) are spectral slopes with power-law indices −4 and −2, respectively.

Figure 3: Time evolution of spectral indices of (red) magnetic and (blue) electron ve-

locity fluctuation energy spectra fit over 0.6 ≤ |k⊥λe| ≤ 3.0.
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